Ela Even and Odd Tournament Matrices with Minimum Rank over Finite Fields
نویسنده
چکیده
The (0, 1)-matrix A of order n is a tournament matrix provided A + A + I = J, where I is the identity matrix, and J = Jn is the all 1’s matrix of order n. It was shown by de Caen and Michael that the rank of a tournament matrix A of order n over a field of characteristic p satisfies rankp(A) ≥ (n − 1)/2 with equality if and only if n is odd and AA = O. This article shows that the rank of a tournament matrix A of even order n over a field of characteristic p satisfies rankp(A) ≥ n/2 with equality if and only if after simultaneous row and column permutations AA = [ ±Jm O O O ] , for a suitable integer m. The results and constructions for even order tournament matrices are related to and shed light on tournament matrices of odd order with minimum rank.
منابع مشابه
Rank properties of subspaces of symmetric and hermitian matrices over finite fields
We investigate constant rank subspaces of symmetric and hermitian matrices over finite fields, using a double counting method related to the number of common zeros of the corresponding subspaces of symmetric bilinear and hermitian forms. We obtain optimal bounds for the dimensions of constant rank subspaces of hermitian matrices, and good bounds for the dimensions of subspaces of symmetric and ...
متن کاملEla Universally Optimal Matrices and Field Independence of the Minimum Rank of a Graph∗
The minimum rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose (i, j)th entry (for i = j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. A universally optimal matrix is defined to be an integer matrix A such that every off-diagonal entry of A is 0, 1, or −1, and for all fields F , the rank of A is the minimum rank o...
متن کاملEla the Minimum Rank Problem over Finite Fields
The problem of finding mr(F,G) and describing Gk(F ) has recently attracted considerable attention, particularly for the case in which F = R (see [29, 17, 26, 25, 27, 13, 33, 5, 9, 22, 2, 11, 6, 7, 10, 18, 4]). The minimum rank problem over R is a sub-problem of a much more general problem, the inverse eigenvalue problem for symmetric matrices: given a family of real numbers, find every symmetr...
متن کاملEla on the Brualdi-li Matrix and Its Perron Eigenspace
The n × n Brualdi-Li matrix Bn has recently been shown to have maximal Perron value (spectral radius) ρ among all tournament matrices of even order n, thus settling the conjecture by the same name. This renews our interest in estimating ρ and motivates us to study the Perron eigenvector x of Bn, which is normalized to have 1-norm equal to one. It follows that x minimizes the 2-norm among all Pe...
متن کاملEla Graphs Whose Minimal Rank Is Two: the Finite Fields Case∗
Let F be a finite field, G = (V, E) be an undirected graph on n vertices, and let S(F,G) be the set of all symmetric n× n matrices over F whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. Let mr(F,G) be the minimum rank of all matrices in S(F,G). If F is a finite field with pt elements, p = 2, it is shown that mr(F,G) ≤ 2 if and only if the compl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011